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IN’VESTIGATIX3NOF A NONLINEAR CONTROL SYSTEM

By 1. FIHgge-I&z and C. F. T~lor

Nonlinear elements me sometimes added to linear control systems
in order to improve the response of the system to an srbitrery input.
This can be done in clifferent wsys1 one of them being the variation of
the coefficients of the differential equation describing the system
before the nonlinear elements me sdded. This vmiation of the coeffi-
cients may be done in a continuous or in a discontinuous way. In the
present paper a discontinuous vsriation of the coefficients is studied
in detail and investigated-forpractical use.

The nonlinear feedback is applied to a second-order system. From
former analytical considerations the process of control is visualized
as establishing.anensemble of linear second-order differential equations
(some With stable andsane with unstable homogeneous solutions) end
switching frcm one equation to another so as to maintain small instanta-
neous error for relatively srbitrary inputs. Physicallyj this control
process is realized with a l$near second-order control system to which
hsve been added possible discrete combinations of proportional and deriv-
ative feedback. ‘Iheparticular combination of feedback anployed at any
instant is determined by a feedback stitching circuit which is in turn
operated by sensed binary information obtained frcxnthe outputj output
derivative, errorj and error derivative (nsmelyj the signs of these vari-
ables). Techniques that are common to the digital computer field are
used to implement this switching circuit.

Once physical realization is ccmpleted, simulation techniques are
used to study and evaluate the performance of the nonMnear control systen
and to compsre it with a,linesr system for a wide vsrietyof inputs. b
addition, the effects of physical imperfections that sre likely to be
encountered in any application of”the control theory sxe considered (e.g.,
switching delsys and acceleration limits).

An malysis of the experimental results shows that this type of non.
linesr control system performs better thsma linear control systm having
a natural frequency 15 times greater. For this ccmparisonj performance
is evaluated in terms of the average value,of the’msgnitude of the instsn-.
taneous error for band-limited inputs. Furtherj in contrast with the
linear system, the nonlinear system performance is virtually Independent

G of variation in the dsmping factor of the system. ~
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A preliminary extension of this type of nonlinear control concept
to higher order syst~ is presented. % erimental results are given
for a third-order system. These results’show that Just as in the second-

k

order case the nonlinesr systa performable is better than that of a
comparable linear system.

INTRODUCTION

I

With the demsd for more exacting perfomnance, more emphasis has
been placed on nonlinear aspects of control systems. The term “control
systems” can be interpreted to include a$bive networks @ feedback
simplifiersas well as servomechanisms. Frcm the standpoint of analysis,
unintentional nonlinearities have to be @sen into account to explain
performance. From the standpoint of synthesis, intentional nonlinearities
have been intrduced to improve performance. However, up to this date

—

only in special cases have advancements %eeg obtained in the field of
nonlinear control systems.

The designs of nonlinear control systems have inherent tivantages.
One advantage is that the response of a nonlinear systa at a certain
time csm be made less dependent upon past;response then can a linear

system of comparable power-handling capab;lLw.l This means that the
nonlinear system can be made to follow mo’e arbitrary classes of inputs

fwith less dynamic error thsm the campsrab,e &e= system. Another
advantage is that the mathematical difficulties encounteredmsy actually
be conducive to consideration of more rea~i,sticcriteria of performance.
In the nonlinesr realm it is essentially bs easy to invoke a criterion
such as the minimization of instantaneous/errorfor nonstationary random
inputs as it is to invoke the lsrgest posqible flat smplitude response
for sinusoidal inputs.

Y

v

In the present paper a control syst~ of second order, which was
first suggested by Fl&zge-I&z and Wunch on the basis of analytical
studies (ref. 1), is investigated. The physical realization of this
system and its performance are studied in great detail.

This investigationwas conducted at Stanford University under the
sponsorship and with the financial assistsmce of the National Advisory
Committee for Aeronautics. The authors wish to thank Dr. A. M. Peterson
of the Electrical Engineering Department o’fStanford University for his
continued interest and his most helpful advice on the electrcmic problems
which were encountered during this investigation. They also wish to
thank Mr. G. S. Bahrs for his useful suggestions for a special transistor
switching circuit. w

ll’nlinesr theory, the impulse respo~e or the autocorrelation func-
tion of the system gives an indication of how past response is weighted. *
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SYMBOIS

peak-to-peak smplitude of input

parameters defining a systa

parameters in differential equation for control servo

viscous dsmping of motor and reflected load referred to motor
shaft

linear dsmping factor

instantaneous error

es = de/d-r

transfer function, l/(ccp+ 1)

inertia of motor rotor, gears, and reflected load

gain constants

constant of proportionality between output velocity and back
electrmnotive force

constant depending on initial conditions

operator, d/dt

repetition rate or period

time

maximum allowable switching

input voltage

input into systa

output from syst~

approximation of output

del~

symbol used to denote different constants

sgn (yte) - @ sgn (y’et)
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smallest values of parameters giving good nonlinesr system
performance

positive constants

7. = -,7 sgn (ye) - ~7 sgn (ye’)
U A
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Fl = ~/dr
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Subscripts:

d

e

h

L

Iin

L

positive constant

small positive qusutity

coordinates introduced in

1-

appendix D

radius of curvature

real part of ccmplex frequency variable a+ju

nondimensional time variable normalized with respect to
v.-

%> Uvt
v

nondimensional.frequency, u)/~

frequency

natural frequency of undsmp&d linesx system

time average

d( )/dT

d2( )/dT2

eqtiity sign in equations which describe operations (see
eqs. (2) and (3))

ideal or desirable

error

image

limit

linear

.

-. —

..
.9

.

m,n = 0,1,2,3
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u

max msximum or upper bound

min minimum or lower bound

nonlin nonlineer

o optimum

REVIEW OF LINEAR CONTROL THEDRY

It is desirable to obtain from linesr control theory sc.uneuseful
concepts that can be generalized to the nonlinear case. These concepts
exe:

(1) Operational notation

[
a) Transfer functions
b ) Block-diagram representations

(2) Control criteria

(3) control through parameters

At the onset second-order systems are considered. However, there is no
difficul~ in extending these concepts to higher order systans.

Operational Notation, Tr~fer Functions, and Block Diagrams

Consider a pbysical process or situation in which the output is
described in terms of the input as

2
a~+b~+cy =x(t)
dt2

(1)

where a, b, and c are constants, y = y(t) is the output, snd
x = x(t) is the input.

Utilizing the operator p = d/dt, equation (1) m~ be written

(ap2+bp+c)y~x (2)

(Eq. (2) reads “(ap2+bp +c) operating on y equals operationally x.”)
Formal solution of equation (2) for the ratio of output over input yields
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operational transfer fimction for the system. Thus

p 1 : ‘:”””
(3)

ap2+bp~c

The operational block diagrsm for the syk!tm is obtained by placing
inside &box the transfer function, equation (3). Coming into the box
is the input; going out of the box is the output (see sketch a).

.151===kput

n

.

Sketch a.

functions smi block diagrsms are utilized merely asHere transfer
shorthand operational notations for differential equations. This is
opposed to the Laplace transformationvi~wpoint where transfer functio~
(snd thus block diagrsms) have the properties of functions of the complex
frequency variable, p = a + Jm. The re on for stressing this inter-

Ypretation is that shorthand (operational notation has proven useful in
the transition to nonli.nesrcontrol whereas the Laplace transformation
viewpoint (e.g., synthesis in the complex f~equency plane in terms of
poles and zeros) has not.

Control Criteria

To gage the performance of an actual system an ideal or desirable
system is usually established as a straight-through connection (i.e.,
yd = x as denoted in sketch b, a block diagrsm of an ideal system).

Sketch b.

C!omparisonbetween the desired output yd W actual output y is

accomplished by utilizing the instsmtaneous error:

#
.

—

e=(yd-y) =(*-y)
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A control criterion or criterion of performance is defined as the mini-
mization of some property of the hstsntsmeous error e for a given
class of inputs. The minimizing process csmbe exact (I.e., resulting
from a variational’formulation of the problan) or approximate.

Control Through Parameters

h linesr systems the process of control is usually plqmically
obtained by applying feedback and/or compensation to the system that is
to be controlled. A control criterion is realized (as closely as possi-
ble) by adjustment of these applied quantities. The concept of control
thr&gh parameters is an interpretation of this control process in terms
of the differential equation describing the process. A simple example
illustrates this concept.

Consider the position control servo shown in figure 1. The uncon-
trolled (open-loop) system consists of an smplifier, amnature-controlled
motor~ gear train, and 10EMI. Closed-loop operation is obtainedby uti-
lizi~ proportional and derivative

and ~ exe adjustable. Armature

the block diagrsm the differential
be written:

feedback. The gain constsnts -Kl

inductance has been neglected. From

eqmtion for the open-loop system mey

LL-\&+L~w
\ %/ 0)—=x(t)
Kl ~t2 - K1 dt

(4)

Similsrly, the closed-loop differential equation is

In either case the differential equation

&+@+-ya—
dt2

(5)+ (l)y = x(t)

is of the form

= x(t) (6)

where a set of three parameters E, ~, end F completely characterizes
the systm. It is possible, then, to view the process of control in
term of these psxameters. One starts with apsrsmeter set (a,b,c)
defining the uncontrolled system. A control criterion yields an opthnum
parameter set (a,b,c)o. Control (feedback and/or compensation) is intro-

duced ideally making it possible to adjust (a,b,c) to (a,b,c)o. In the

above exsmple the gain constants K1 and K2 afford this sd~ustment.
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This adjustment of the coefficientsw %e done in a continuous or
a discontinuous ~. Ih reference 2 Sc~d and Triplett have describ~
an interesting and efficient way to vary the coefficients of a basically

v

linesr systan continuously.

NONLINEAR CONTROL

Tlm3nsitionTo Nonlinesr Control

In the preceding section it has beem~mentioned that the process of
linear control of second-order systems @be visualized as the adjust-
ment of the psnmeter set (a,b,c) to the Set (a~b~c)o. The term optimum

was used in the sense that some criterion~ofperformance was approached
as closely as possible.

It seems logical in the transition to nonlinear control still to
hypothesize control through psrsmeters. me transition is obtainedby
allowing the parameters to becmne functions of the output y(t) end the
input x(t); that is,

a+a(x,y)
,-

b+b(x,y)

C+c(x,y)

The mathanatical description of the system is now

5a(x,y) d +b(x,y) ~+ c(x,y)y =x(t)
dt2

(7)

Without knowing the specific nature of the’functions a(x,y], b(x,y),
and c(x,y) it may be seen that equation (7) is a nonlinear, inhomoge-
neous, and~or nonautoncmous differential etjyation. Mathanatically,
little in general canbe said *out the solution of equation (7) given
the function set a(x,y), b(x,y), and c(x,y). It seems, then, even
more hopeless to attempt a synthesis problem which involves both finding
the function set [a(x,y), b(x,y), C(XjY)]o for a specified control

criterion snd then physically realizing ths systa described
mathematically.
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Nonlinesr Control Theory

One analy%icai attack orIthe nonlinear control-system-synthesis
problan has be=made by Fliigge-Iotzand Wimch (refs. 1 and 3 to 5).
They suggested varying the coefficients a, b, and c, not continuously,
but discontinuously. That means that for tl c t < t2 there iS one set

of coefficients, for t2 < t < tkj there is snother set of coefficients,

md so on. The different sets of coefficients are chosen in advance, but
the tties -ti for change from one set to another sre determined by the

value end the decrease or increase of the deviation (x - y). b other
words, the syst= is linear im any interval ti < t < ti+l, but is non-

linear in the whole. The transition at any switching time ti occurs

with continuous values of y(t) and dy/dt, but discontinuous values

of (d2y/dt2).

Phaae-plsne techniques were used for studying appropriate sets of
coefficients snd the ~propriate dependence of the switching times on the

deviations.2 ‘I!heauthors succeeded in finding a switching rule which
assures good performance in a multitude of cases. Their control systen
is mathematically describ~ in the following wsy:

*+ 2D(l+pJg+ (1+7JY =X(T)
dT2

(8)

where

X(T) input

y(T) output

D linesr damping factor (when ~ = 7n = O)

T nondimensional time variable normalized with respect to ~;
that is, T = ~t

?For details the resder is referred to references 1 and 3 to 5.
Reference 1 contains the ideas but is so condensed that the inquisitive
reader will find it useful to resd references 3 to 5, of which refer-
ence 5 is probably the most accessible. Figure 3, p. 12, and figure 30,
p. 70, of reference 5 will help in getting acquainted with the phase-
plane trajectory of an output. Some of the original studies are described
again later in the present paper when the performance of the system is
discussed.
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q) natural frequency of undsmped linesr systemj D = ~ = Yn = O

h= -lP sgn (y’e) - 2P sgn (y’e’)

m= o, 1, 2, 3

7~ = -17 sgn (ye) - Zy sgn (ye’)

n =0,1, 2,3

1~}2~~17)27 positive constants

Sgn (f) =

e

( )’ = q

{

+1 for f>O

fi= -1 for f<O

instantaneous error, e = y~ -
(

Y) =(x-y)

)/&

Actually, equation (8) is a normalized form of the control eqpation
derived by Fliigge-Iotzand Wunch. However, the notation has been sane-
what changed. See appendix A for a campsrison of notations and the
normalization involved.

The subscript convention is

P3 =1P+2J3 Y3 =’~y + ~y

P2=113-2P Y2=1Y-2Y

t

(9)
PI = -1P + 2P = -P2 Y1 =--1Y + 12Y= -Y2

Po=-~P-#=-P3 YO=-~Y-2Y=-Y3

Properties of Equaiion (8)

me following properties of equation (8} sre noteworthy:

(1) Equation (8) is a piecewise Mew but overall nonlinesr differ-
ential equation.

(2) The parameters ~ and yn .@ stepwise switching functions

of time (their implicit vsriable). Zhis’property is illustrated in figu-
re 2.
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(3) me the of switching and the particular combination of the
. parameters ~ end 7n employed at any instsmt sre expki.citftinctions

of the output y and the input x. Specifically, they sre determined
by quantized information derived from the output, output derivative,
error, and error derivative, nsmely, the sign of the products sg (y’e),
sgn (y’e’), sgn (ye), and sgn (ye’).

(4) There me basically 16 m,n subscript ccunbinationsand thus
16 ~,7n parsmeter combinations. However, a detailed study of property

(3) shw that only 8 are allowed. The allowed conibinationsmsy be

m =n= 0, 1, 2, 3

or

m+n

m+n= 3

The reason for the “exclusion principle” on coefficient combinations
< stems from a desire to obtain mirrored-image outputs for mirrored-image

inputs; that is,

Yti(d = ‘Y(T)

is desired when

%l(T)= ‘X(T)

(5) The control criterion that wss employed in obtaining the func-
tional dependence of ~ and 7n WaS

Iyd-yl=lx-yl=lel<e

where e is a small positive quantity. This criterion of maintenance
of small instantaneous error between desired output and actual output
enabled reduction of equation (8) to the approximate autonomous differ-
ential equation (see refs. 1 and 3 to 5)

y“ + 2D(1 + @y’ + 7ny = (x - y)

=0 (lo)

. Thus phase-plane techniques could be employed to find the functional
dependence of ~ and Yn..-
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(6) Once the linear dsmping factor D is fixed theyrocess of con-
trol is obtained by switching parameters ~ and yn. Equation (8) w
consists of an ensemble of eight (see property (4)) linesx differential
equations,with constant coefficients. me process of controlmsy be
visualized as the switching from one member of the ensemble to another.
This switching is determined by quantiz&i information derived frcm the
input and output (see property (3)). IYm- another poi~t of view (con-
sistent tith the approximation described ti.property (5))) the output Y
is to be forced to satism two conditio& simultaneously, that is, both
sides of equation (10). This is approxip@d.y possible by switching to
Vsrious ~ and yn psrsmeter combination& and canbe visualized as

the process of switching to various phase tr”kjectoriesof equation (10)
in the phase plane of y’ against y.

Discussion of Nonlinesr Control

In the section entitled “Transition’toNonlinesr
transition to nonlinear control systems utilizing the

—

Control” a logical
concept of control

through pentametersis suggested. However, rnathanaticaldifficulty hsmpers
the development of this appros@. In the next two sections a particular b

nonlinesr control -theoryis presented. This theory constitutes the first
step in the synthesis of a nonlinear control system which obtains control
through perimeters. Since the functional dependence of the parameters

i

has been established, the problan is reduced to finding a set of five
(COW3tELIIt)pS=Et-S (D,@&~,27)o.r It should be ~p@l?eCidEd, how- .“

ever, that even the optimization of this’fi~e-parsmeterset cannot in
general be accomplished analytically beca~e of the overall nonlinear
nature of the problem.

Aside from questions on the analytical-optimizationof psmmneters
in equation (8), there sxe equally importsnt practical questions such ss:

(1) Can a useful control system that is described by the nonlineez :
differential equation (eq. (8)) be realized?

(2) If the systa is realizable, what is its physical nature?

(3) If the ~yst~ iS rea~zable, hm does it compare in performance
and complexity with a “god” second-order linear control system?

There are then mathematical difficulties on the otiehand and physical
difficulties on the other. The mathematical difficulties could be handled
by numerical methods of integration of the differential equation (e.g.,
utilizing a digital computer). However, this would give little insight u

into the nature of-a system that is controlled through discontinuous
variation of the parameters ~ ~d 7n.. It has been found advantageous

F
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to investigate the physical questions first W
techniques (analog computer) to investigate the
this type of control.

PHYSICAL RE&lZATION

Physical Model

13

then to utilize simulation
analytical properties of

It is desirable to study the nature of a physical control systan
that is described by an ensemble of eight linear differential equations
with control being accomplished by switching frcm one maiber of the
ensemble to another. To do this equation (8) is rearranged as shown
below:

-5d
( )

+21)$$+y=X(T)- m&#&+7ny
dT2

(11)

or in operational notation

(pz+m-p+

Forgetting for the time being
actually functions, one interpretation of this operational equation and
thus of equation (8) is shown in figure 3.

l)y Qx - (m&p + 7n)y (12)

that the parameters ~ and 7n sre

Figure 3 cenbe modified to tske into account the fact that ~

end yn sre stepwise switching functions of time, their implicit variable

(i.e., & sad. 7n can each take on four discrete values). ~is is

shown symbolically in fiwe k. The -licit functional dependence of
thepsrsmeters ~ and 7n has not yet been given and is thus indicated

as a switching logic of undefined chsracter.

UtiMzing the block diagrsm of figure 4, the physical interpretation
of the nonlinear control systm describedby eqmtion (8) is quite
straightforward. This system consists of:

(1) A linear feedforward portion. This portion could be a linear
control system in itse+f (e.g., the simple position control servo of
figure 1

..

(2)

and equation (5)).

A feedback stitching circuit comprised of:
(a) Four discrete values of proportional feedback 7n

(two positive and two negative as shown in fig. 2)
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(b) Four discrete W1.ues of derivative feedback 2DPm
(two positive and two negative &s shown in fig. 2)

(c) A switching logic which-at eny instant determines the
particular combination of derivative and proportional feedback

‘~~ Yn
-.

employed

Switching Logic

In this section it is shown that digital-computer techniques ca
be utilized to establish the switching logic for the feedback switching
circuit mentioned in the previous secti~n.

Recall that the perimeters ~ and 7n have been defined as func-

tions; that is, ,, .-

%= -lj3sgn (y’e) - ~p sgn (y’e’)

1
m= o,l,2;3-

7n = -17 sgn (ye) - ~~ sgn (ye’)

t

(13)

●

☛

*

.

n =0,1,2;3
J

.—

where the subscript convention has been’given by equations (9). Equa-
tions (13) detezmine the switching logic. ~us, for exsmple, p3 is

chosen when (y’e)<0 end (y’e’) <0’ and 7fi is chosen when

(ye) >0 end (ye’) >0, so that the combinati~n ~370 is chosen when

(y’e)<0, (y’e’) <0, (ye) >0, and (ye’) >0. At this point it
appears necessary to form the products ‘ye, ye’, y’e, and y’e’ and
then to find the sign of these products in order to establish the
switching logic. Physically, however, the process of multiplication is _ _
to be avoided if possible. That there is q~ossibility of avoiding
multiplication msy be gleaned by realiztng that

.gn (ah) = sgn (a) sgn (b)

since ,... -..

s.
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b

Thus equations (13)

*
1%=

7n =

Again the subscript

may be rewritten as

[ 1-fWm(Y’)1Ps=(e)+@S=(e’)
m=0,1, 2,3

1

-sw(Y)~sm (e)+ 27s9(e’)1 [

n

convention

Thus, utilizing equations

15

(w)

=0,1, 2,3 V

is defined~y equations (9).

(~), for example, f33 is chosen when

y’>0, e<O, e’<0

or when

y’<0, e>O, e’>0
*

70 is Chosen when

w y>O, e>O, e’>0

or when

y<O, e<O, e’<0

so that the ccmhination (~3,70) is chosen when

y>O, y’<0, e>O, e’>0

or when

y<O, y’>0, e<O, e’CO

From this exsmple it can be seen that it is not necessary to find the
signs of products but rather that it is sufficient to find separately
the signs of y, y’, e, and et.

Since the sign of a vsriable is quantized binary information of the
variable, it is convenient to utilize digital-computer techniques to
further the switching logic. This may be done as follows:

●

I& the conventionbe sdopted that y> O be represented by O
(binary zero), Y<O be represented by 1 (binary one), and similarly

*
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for yt, e, and e’. If the ordered se~ueii~eis now established as

(y, y’, e, e’)

four-digit binsry logic m~be empl~ed to encode equation (14). h
particular, abinsry coded decimal m~be used (see table 1).

It was mentioned in property (4) ofthe section “Properties of
Equation (8)” that not all of the 16 pos$ible ~,~n psrsmeter combina-

tions were allowed under their definition. This WS.Stermed an exclusion
principle on the allowed coefficient comljhations. One of the advantages
of the suggested binary coding scheme of table 1 is that this exclusion
principle is built into the code. To @erstand this, consider the
exsmple of the combination P370 given previously. In the code language

B370 is chosen when the binary number 0100 or 1011 occurs. What is

implied by this exsmple is that a binary number end its ccmrplementmust
be identical (i.e., OOoo = ml, 01.11= 1000) as far as the switching
logic is concerned. Thus out of the 16 possible four-digit binary num~ers
only the first 8 are unique. That is, in counting from O to T in a binary
coded decimal, if cmnplements sre includ&d then so we the other 8 possib-
ilities, 8 to 15 (see table 1).

The allowed ~,7n psremeter combinations along with the encded

logic of table 1 a&e summarized in matrix form in table 2. Exsmples are
given to illustrate the meaning of the table. In general the allowed
subscript combinations sre —

m=n =0,1, 2,3

or

m+n

m+n= 3“

Realization Completed

Now that equation (14) haa been successfully interpreted (encoded)
in binsry-logic fo~ (table 2), the realization of a feedback switching
circuit utilizing this encoded logic is q typical digital-ccmputer
switching-circuitproblem. As is charac~eriitic of any sjnthesis process
there will, in general, be many ways to desi”@ this feedback switching
circuit. The block diagram of figure 5 s~ows one design that completes
the physical interpretation of equation (,8).alo~ the lines started in”
figures 3 and 4.

—

!.(

..

u
—
—
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fi figure 5 the feedback switching circuit consists of:

(1) The four discrete values of both derivative end proportional
feedback 2D~,Yn

(2) A relsy switching circuit that connects the proper feedback
combination

(3) Zero-coincidence detectors CD that drive the bsmks of relays
to one position or the other depending upon the signs of the sensed
variables

It should be noted that, depending upon the application, other forms
of sign-sensing devices smd other switching devices such u diodes, tran-
sistors, electronic switches, and/or magnetic simplifierscould be employed
to obtain other realizations of equation (8). In my case the following
properties exe basic to any realization:

(1) The signs of the four variables y, y’, e, and e’ are
sensed. This maybe thought of as the process of “resilingin” the four-
digit binsry logic of table 1.

(2) On the basis of the & possible binary decisions the required
feedback cmnbinations 2D~,Yn as defined in table 2 are connected around
a linear second-order member.

It is important to stress that the only type of nonM.nesr operations
required in the realization of this nonlinear control systm are switching-
type operations. h addition, all the switching is to be performed in
feedback paths, which means that the switching can be done at low elec-
tronic power levels. These practical features are definite design advan-
tages. Thus, in Swmnary, it can be said that this type of nonlinesr
control system is not only physically realizable but also practical frcm
an instrumentation standpoint.

EXPERIMENTAL VERIFICATION OF NONLINEAR CONTROL THEORY

Discussion of Simulation Techniques

Simulation techniques were chosen as en experimental mode of irrves-
tigation of performsmce of the nonlineer control systeu’realized from
equation (8). These techniques offer the following advantages:
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(1) Proximity to the actual control systan. This means that the
same practical features with re~ard to instrumentation (see the section
entitled “RealizationCompleted’) are exploited to fullest advantage.
Thus, just as in the actual systmn, the only nonlinesr device required
for the simulated model is a binary log{c feedback switching circuit
(see appendix B for details). The line~ portion of the system is simu-
lated on an analog computer. Here the on~- “operationsreqyired are sum-
mations, two integrations, and one dfff&rentiation. These sre all
operations which an analog computer does we-n. It can be said then that
the accuracy to which the shulated model s’tilates equation (8) depends
primerily upon the realized feedback switching circuit. E&e most essen-
tial type of imperfection to be expect~, in”this switching circuit is
time delay in switching. Exactly the ssme type of imperfectionwill be
met.in the physical control system. Thu~.there will be more nearly a
one-to-one correspondencebetween the Gimulated model X the actual
system than between either and equation (8).

(2) Convenience in experimental inv&tigation. la order to charac-
terize the output y of the nonlinear syst-kmcompletely, a set of five
parameters

and the input x must be specified. k’the performance evaluation of
the system it is necessary to be able tol~ these characterizing
quantities conveniently. Stimulationtechniques allow this.

Presentation of Exper@ental Results

Figures 6 to 17 present experimental results obtained from the simu- _
lation studies of equation (8). Briefly, the results we presented as
follows:

Figures 6 to I-2compare the respons@ (output y and error e) of
the nonlineer system with that of a Iine& system for vsxious classes of
inputs x. (In compsring the linear and ~noriiinearresponses it will be
noted that there is not exact synchronisniof events because, with the
available experimental facilities, it was necessary to obtain the two
responses separately.) The linear systaq utilized is that which consti-
tutes the feedforwerd member of the non~esr system corresponding to
the case where &=Yn=O* The nonlinear system forfigures 6 to 15 is

P3=-P()=?

y3=-yo=2. :
,—

72 = ‘YI= 0:5.

.

Y
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Figure 6 compares the system responses to sinusoidal inputs and
figure 7 shows the responses to triangular-wave inputs. A partially
integrated square wave x(T) is defined as the output of a first-order
linear system characterizedby the transfer function H(p) = l/(~P + Q,
when the input x1(T) is a square wave. The responses of linear and
nonlinear systems to this type of input are given in figure 8. The
responses of the systems to small sinusoidal inputs are given in fig-
ure 9. Figure 10 gives the responses to clipped sinusoidal inputs. Fig-
ure 11 shows the response of the nonlinear system to sinusoidal inputs
that have been displaced with a direct-current component. Figure 12
shows the responses of linear and nonlinear systems to a triangular-wave
input whose periods and amplitudes are randomly modulated.

Figures 13 to 15 deal with the effects of imperfections that sxe
likely to be encountered in the actual control system. Figure 13(a) gives
the results smd data of m experimental investigation on the effects of
switching delays due to threshold in sensing the sign of the error,
sgn (e) fol a triangular-wave input. The e~rimental results for a
constant 9-volt input (see fig. 13(b)) are given below:

. Threshold,mv. . . . . . . . . . . . . . . lk 26 36 44
Peak-to-peak error, mv . . . . . . . . . . 44 I-24 220 290

4 Figure 14 shows the effects of placing progressively smaller limits on
the acceleration of the nonlinear control system. For each value of y“
limit considered, the output, output derivative, output acceleration,
and instsmtaneous error sre shown. The effects of a velocity limit on
performance of the nonlinear and linear systems sre compsred in figure 15.

Figure 16 presents the responses of sane special cases of the non-
Hnear systan (special With respect to the choice of the ~ smd yn

parsmeter values). h this figure the system responses to a triangulsr-
wave input me given for four different psrameter sets. The parameters
pertinent to these results sre listed in table 3 for easy reference.

Figure 17 gives the response of the non~nesr system possessing a
low linear dsmping fsctor D = 0.1. The responses sre for a triangular-
wave input whose frequency was varied in the same msnner as that of fig-
ures T(a) and 7(c).

Detailed discussions of these results exe given in the section
entitled “Discussion of Results.!’
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DISCUSSION OF RESULTS

Performance Evaluation of Sinusoidal inputs

“

To cmplete the synthesis of the nonlinesr control system that has
been derived from equation (8), it is necessary to choose the magnitudes
of the parameters that characterize the system, that is, (D,113,#~lY,27J

or (D,~3,~2,7~,7z). It is expected that the performance of the sys%m ““ ““”

depends on the choice of these pemmeters. For studying their influence,
simulation techniques proved to be veyy coq-~ient, Expertiental results
were given in figures 6 to 12 where the r!esponse(output y and error e)
of the nonlineer system was comp=ed with the response of a linear system
for a veriety of inputs. This gives the possibility of estab~shing the
properties of the tionl.inearsystem not only by itself but also with respect
to a lineer standard. The linesr system mpl~ed for this purpose was

—

that which constitutes the feedforward member of the nonlinear system

(i.e., ~=7n =0).

These experiments allow parsmeter values for good performance of the
nonlinear system to be found.

#
Analyticallsnd practical consideration

that aid in the optimization,teretreated later in the section entitled
“Choice of Psmmeter Values. .

The sinusoidal responses of the nonlinear and linesr systans sre
CmPared in figure .6. Here, the frequency range considered was
o.l~Q= u/* s 2. The peek-to-peak inptitamplitude was 20 volts. These

results show that the nonl.inesrsystem reproduced the sinusoidal inputs
up to the frequency Q = 1.4 with virtually no instantaneous error whm”
compared with that of the linear systa. Fourligher frequencies the error
for the nonlinear syst~ increased rapid~ to the sane order of magnitude
aa that of the linear system.

Substsm.tiallythe ssme comparative p’rfoxmance was displ~ed by the
two systems when the input was a smaller ?k-voltpeek-to-peak) sinusoid
as is shown in figure 9.

Figure 11 gives the response of the nonlinear syst& to a 20-volt
peak-to-peak osculating sinusoid over the frequency range 0.1 SQ so.8.
This is a severe type of input for the nonlinear system since both x
and X’ simultaneously go to zero. This tiplies that y “snd y’ are
aho small so that in equation (8) the discontinuousvariations of the
parameters ~,7n cannotbe so effective :indetermining the acceleration
y“, since

Y1’=x- [2D(1+ jQY’ + (. + 7n)~ (15)

.

I/
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From the figures it is seen that the nonlinesr system did have some dif-
ficulties new the osculating regions; further, the peak error increased
as the frequency was increased (see appendix C). As might be expected
from equation (15) this error for small values of y and y’ can be
reduced by increasing the magnitudes of the parameters (this will be
discussed in more detail in the section entitled “Choice of Parameters”).
At any rate, by comparison, the error for the present system is alwqs
less than that of the linesx system of figure 6. (In the line= realm,
error is independent of a shift in the direct-current level of the input.)

Taken collectively, the 20-volt, the h-volt, and the osculating
20-volt sinusoidal inputs tend to form a more realistic appraisal of the
nonlinesr system performance than a single input smplitude. There is
still much that can be learned from a detailed study of these three
responses, but first it is desirable to obtain some sort of a quantitative
comparison between the nonlinesr and the linesr system performance. One
such comparison can be made as follows:

(1) Assume that the input to both
for a long time, a k-volt peak-to-peak

n = O@v =

so that as far ss the linesr systm is
alternating-current input.

Systms x(T) is, and has been
sinusoid of frequency

0.1

concerned this is a stesdy-state

(2) Determine how much thehndwidth or the natural frequency mv
of the linear systm must be increased in order that the time average of
the magnitude of the instantmeous error

for the linear systa be reduced to that value given by
system.

Here it is easy to show that for the low-frequency
alternating-current case

jnr the steady-state error isFor an input x = Ixlm=e

the nonlinear

stesdy-state

given by

(16)

e& ( 1-y={x]m=l- )e3~Tl+jWD-f22
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For small values of Cl this equation yields

e- Ixlu[l - (1 - #U2D+ . . .)]ejnr

- IxImw(jQ~)e~QT

or

but

therefore

For the given systa end input

For the nonlinear
from fig. 9(a))

.
.—

TaMn .= o.1.~

system and the ssme input (approxhte calculation

Thus,

Now from equation (17),

Ie IIin W thisreduce ‘--

ssme factor.

h the example of the linear control system of

that in order to

be increaaedby the

figure 1 and equa-
tion (5) this increase in Uv by a factbr of 15 would mesm that both

the inner and outer loop gains must be increased by the order of magni-

tude of (15)2 since

b
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!IMs is true assuming that the dsmping factor remains constant. Such
em incresse in the loop gati is frequently not at all physically possible.

Up to this point little attention has been given to the detailed
nature of the nonlinesr syst~ response. Closer inspection of, for
exsmple, figures 6(a) and 6(c) shows that the output y is a function
that Lhks serpentine fashion (oscillates) at a very high rate about the
input x, but still the magnitude of the error is small. In fact, it
is necesssry to inspect the error at a scale 20 times larger than that
of the output even to notice this phenanenon. Math~tically this means
that the functions x and y approach one another closely but that
their derivatives differ appreciably. P~sically, however, this is not
at all undesirable as long es the magnitude of the error is small.
(Actually for mechanical systems this property would be useful in pre-
venting static friction.) This fine-grained oscillating character of y
is the very essence of the nonlinear control theory. Every time the
error or error derivative goes thro@ ZerO the par~eter set ~)7n of

equation (8) changes discretely as defined in equations (13) or by the
binary logic of table 2. The discrete ch~es in the psmmeters cause
discontinuities in the second derivative y’, which when integrated twice
give y its serpentine chsracter. To illustrate this point, the sketch
of figure 18 shows ssmples of the superposed input end output of the
nonlinesr systan. The input in this case couldbe that of figure 6(a)
or 9(a).

Circle (a) in figure 18 is a typical cycle of the oscillating chsr-
acter of the output y. Commencing at TO, the error changes sign at

TO, the binary number 0011 is “read into” the feedback switching circuit

of figure 5, and using the notation of table 2 the psmmeter combination
13373 is switched into the circuit. This causes an immediate reversal

in the sign of the output acceleration y“, so that at time Tl the

error derivative changes sign, the binsry number 0010 is read in, and
the parsmeter combination ~272 is switched into the circuit; accekr-

ation is still in the same direction but weaker. At time T2 the error

again changes sign, the binsxy number 0000 occurs, and the combination
~70 is switched into the circuit; acceleration is in the opposite

direction. At time Ta the error derivative chsmges sign, the binery

number 0001 occurs, and P171 is switched in; this reduces the acceler-

+ ation until at ttie T4 the error again chenges sign, 0011 occurs, $373

is again switched in; the cycle is complete. Although it was not
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mentioned at “thethe, figure 2 shows th~s sequence of ~,7n combina-

tions. The nature of the acceleration r&ulting from the switching can
be seen in figure 14(a).

The comparable switching cycle for y> O and y’ < 0 as shown
in circle (b) of figure 18 is:

Logic Psrsmeters
0111 !3073

0110 P1Y2

0100 P370 -

0101 ~271

0111 P073

Similarly, for y< O and yl < 0 as shown in circle (c) of figure 18:

Logic Pareqeters
1100 P373

1101 @~72

1111 B~70

1110 P17~

lmo 13373

*-

This is the m.irror-imageswitching cycle for circle (a) (see property (4)
in the section “Properties of Equation (8)” sad also the discussion in
the section “SwitchingLogicl’).

Finally, for y< O and y’ > 0 ad in circle (d) of figure 18:

Logic Psrsmeters
1000 P073

1001 ~s72

1011 $~Yo

1010 $.271

1000 ~073

This is the mirror-tia.geswitching cycle for.circle (b).

With this insight into the detailed behavior of the nonlineex system
more information can be obtained fram the:experimental sinusoidal.responses

b

of figures 6, 9, and 11 that have up until now been treated fram a macro-
scopic rather than microscopic viewpoint., Along these lines, the foll~ng

expertientally observed facts ere noteworthy:
i
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(1) In comparing the errors
to-peak sinusoidal inputs in the
O.l~Q ~ 0.8, it is seen-that:

for the k-volt and
frequency range of

25

the 20-volt.peak-
gocd reproduction

(a) Themazni.tudes of the errors are nearly the ssme (see
figs. 6(aj &nd6(e)-and 9(a) and 9(c).

(b) The period of the error is generally smaller in the larger
smplitude case. This is even more pronounced if the h-volt pesk-to-pesls
case is compsred with figure 11 for y in the region of -20 volts.

(2) Good reproduction is characterized by msmy e and e‘ stitchings
(see fig. 18) per cycle of the input. As input frequency
and the upper limit of small error is reached (figs. 6(e)
e and e’ stitchings becmne more infrequent until there
only two of each per cycle of the input.

The fact that the period of the error is smaller for
can be gleaned from equation (8) when it is rearranged as

y“ = -[q. + 13JY’ + ,nY] + (x - Y)

or roughly

For a systm with specified ~,7n parameter values, the

is increased
and 9(e)) the
sxe finally

lsrger inputs

(18)

larger input

and input derivatives will give stronger discontinuities in y“ as the
~, 7= c~binatio~ change. This @lies that ~,~n will change more

often msking the period of the error smaller. See figure lb(a) for the
justification of the approximations in equation (1.8)since y, y’, Y“,
and x me shown in this figure. (The input x was sketched in by hsmd.)

In the frequency range of good reproduction the reason that the
magnitude of the error is virtually independent of the input smp~tude
cannot be explained frcm equation (8) since this fact is intimately tied
in with the imperfections in the feedback s~tching circuit (see section
entitled “Effects of Switching linperfections for details). As measured
frm the experhnental sinusoidal responses, lelm~ is of the order of

15 to 20 millivolts. It might be noted that esrlier in this section the
smaller k-volt peak-to-peak input stnusoid was employed in the compari-
son when it was determined that ~ should be increased by a factor

of 15 in order to obtain the seine W*. This choice of the smaller

input was decidedly in favor of the linear systan since the I.inesrerror
increases lineerly with input amp~tude. Thus, if the 20-volt pesJc-to-
pesk input were used, m increme in uw by a factor of 5X 15 = 75 w~ld
be required to obtain the ssme ~~.
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that there $s a correlation between good reproduction
and the existence of many ~~rm sad error-derivative
very importent since it is,the key to understanding the

upper limits of good perfomnance of the nonlinear system. One approxi-
mate way to investigate this matter is tb establish a deficiency between
the output acceleration required for goo~ reproduction (many stitchings)
and the available output acceleration. Equation (19) gives em approxi-
mation to the output accelerationwhen tbe system is functioning well:

y“ - -[~(’ +@x’+hx] (19)

As an example of this approach consider the input x tQ be a sinusoid
of frequency Q (fig. 6 erg). Since

it is to be expected that the nonlineer sysh will have the greatest
difficulty in the vicinity of 1x1- where, from eqmtion (19))

IIY“-- 17nxlm~

Thus, if in this region the output y is going to interweave the
input x (as is characteristic of good reproduction), then

Iy’’lH> Ix’’[’u

This inequality then places an upper ltiit on good performance of the
system in response to sinusoids

T-Q < F“nlmax

For the system used in obtaining the experimental results of figures 6
~d9, 17nlU=2; therefore, ‘ --

a<~

Inspection of both figures 6(e) end 9(e) tends to substantiate the above
result. For exsmple, in figure 9(e) it is seen for Q = 1.2 (after the
trensient caused by turning on the input hu-been absorbed) that as the
input goes through its msximum, frequent e and e’ Stitchings stop
and do not occur egain as the frequency is increased.

.

.
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Performance Evaluation of I@uts Other thsn Sinusoidal

the preceding section only the sinusoidal response of the

27

non-
linear control systan was discussed in studying performance. Howeverj
it is easy to see that the non~nesr syst~-will cope with my input fi
the ssme manner as it does with sinusoids. Thus, as long as the magni-
tude of input acceleration does not continuously exceed the available
msgnitude of the output acceleration the switching process will commence
and excellent reproduction will result. This type includes inputs with
discontinuous derivatives and discontinuous inputs. The expertiental
sinusoidal responses of figures 6, 9, @ 11 themselves give some indi-
cation of these facts. For exsmple, in figure 6(a) there was an initial
discontinuity in the input and there were discontinuities in the input
derivative when the frequency was changed. The results in figures 7, 8,
10, smd 12 prove further that the non~nesr systen response is not
dependent upon any specific type of input. Given in these figures are
tris.ngulm-wave, psrtially integrated squsre-wave (including squsre-wave),

clipped sinusoidal, and rsndo# inputs, respectively.

It should be noted that in the literature (refs. 1 and 3 to 5) a
k msrginal-type input that would present a case of indecision to the

switching circuit of the nonline= syst= is discussed. This case has
never been encountered experimentally even when the attanpt was to pro-

. duce this case. Thus the marginal-@pe input is not considered practi-
cally hportsnt.

Use of Phaae-Plane Methods to Study Performance

The phase-plane methods that were used in the original analytical.
development of equation (8) (refs. 1 and 3 to 5) can also be gainfully

~Ea the strict statistical sense the probability that the inputs
shown in figures U(a) and 12(b) sxe not ssmples of random stationary
time series is admittedly high because of existing experimental facil-
ities. These inputs were obtained by random manual modulation (both fre-
quency and smplitude) of a triangular-wave input of peak-to-peak smplitude
A and period Twhere

O ~AS 20 volts

O.lSQ =a/Tgo.8

Randcm manual modulation means that the operator vsried by hand both the
frequency and smplitude controls of the input generator as rsmdcmly ss
possible. Ih the present investigation the imperative results of the
linesr smd nonlinesr responses to what appear to be band-limited random
inputs sre felt to be more hportsd thsm the exact statistical proper-
ties of the inputs.
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employed in studying the performance of ,th&nonlinesr control system
derived frm equation (8) once the ~ and 7n psrsmeter values have

been specified. (In this section it is important to distinguish between
~ and yn parameter values, i.e., P3 =2, 132= I, etc., ad ~~n

paxaneter combinations, i.e., P370Y etc.o)

If in equation (8) the error e = (x - y) is assumed small, then
the output y can be approximated by portions of curves that satis~
the autonomous differential equation

Gfi-+2D(l+&)#7n7=o
dT2

(20)

wh~e D, &, smd

Theory.” Further,

in the EIY ph=e

7n me defined in the section “Nonlinear Control

if &/dT = Fl, these approxhating curves me defined

plane by

(21)
d

where M is a constant depending on initial conditions smd .

Equation (21) comes
equation

from integration of the firrt-order differential

Since the particular ~,~n co.tnbinq.tionemployed in each point of

the phase plane depends upon ~, Fl, e; and e’, fourapproximating

curves go through each point (see appendix D). ‘Thetangents to these
curves (eq. (22)) indicate four directions which lie in sn engulsr sector
(see fig. 19). This anguler sector is defined by the two extreme direc-
tions which apply if e and e’ have the same sign. The two inner .

direction values apply if e and e’ have opposite signs. By super-
posing the input

—
x:x phase plane on this ~1~ plane it can be stated

x
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that at any point
within the shsded

29

the tangent to the input phase curve must be included
anmlsz sector (discussed abwe ) if SW1-1.error iS to

be obtained. Thus, ~quation (22)-can be used to study performance. The

/
width of the angular sector changes with the ratio ~ F1 for given &

~d 7n psrsmeter values. It is lsrgest (1800) for ~1~0 smd smallest

for ~ = O if (1 + ~ and 7n have the ssme sign. However, the width

for ~1~0 is not signlficat since all phase curves (including the

input) have infinite slope there. Thus, along the line F1 = O the

curvature of the tiput phase curve must be used to determine limits on
good performance. The radius of curvature of the input must be smaller
than that of the flattest approximating curve.

In order to illustrate the use of these phase-plane methods in
predicting limits of good perfo~ce consider the exsmple of a sinus-
oidal input x = sin SIT. In this case the input is representedby an
ellip~e in the phase pl.smeand

w =-f-l%
dx x’

h the superposed xx’ and xl phase planes of figure 20 are shown

three sinusoidal-input phase curves (i.e., three different frequencies)
smd the fsmilies of phase trajectories of equation (22) for the ~j7n

combinations where e smd e’ have the ssme sign. (b order to avoid
extensive computations, the psrsmeter values indicated in figure 20 sre
those of an earlier investigation (see ref. l).) Thus, the tangents to
two intersecting phase curves define the angular sector at that point,
as has been discussed. By tracing the inputs with different values
of S2 it cm be understood that good performance for the presented
system can be obtained only for Q.< Q. where flo is the psmmeter
belonging to that ellipse which has the ssme rsdius of curvature as the
curve through (T~~l) = (1.0). (Note that the radius of curvature of the

approximating curves jumps at ~1 = O and is smaller for El < O.) b

the first quaibnxat(i.e., approaching El = O from ~1> O) this radius

of curvature is given by

— y-o

Since at this point the ellipse radius of

!22< 7n7

~J-

curvature is $2%,
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Therefore, for the first quadrant

r
Qcy

3. (23)

Here it should be noted that this is the ssme resultas that obtain~
in the section entitled “PerformanceEvaluation of Sinusoidal Ihputs”
even though the psmmeter values are different. For the”systm of fig-
ure 20 y3 = 0.5; thus sl<~.

Another exsmple is given by the input .x = 1 - eaT tith
d(x’)/dx= ~. Since the smallest angulsr Bettor is at ~ = 0,
a= 2D(1 + &) determines the limits on performance. This means that

for the system represented in figure 20 good control can be expected for
a value of a slightly smaller than 0.75.

A step input is represented by x =1 - e-aT with u~co. The
picture in the phase plane is x = 1 - (l/a)x’ with a+m. For very
large values of a this is a straight line.which forms a small angle
with Xt
x’ =0).
possible
does not
through.

= o. For a~~ the curve deg&nerates to a point (x = l;
There is no doubt that a perfect followup of a step is not

because for practical reasons the line for large values of a
lie in the allowed angular sector at any point it is passing

Related to the step input is the sqtiae-wave input. A portion of
the output phase trajectory for a squsre+wave input to the system of
figure 8(e) is shown in figure 21. Fi$ure Z1 is computed with the help
of the differential equation

This equation is obtained from equation (8)_by replacing d~/dT2 by

E~(d~~/dY). Ih this exsmple one caanot imokdiately use approximating
—

curves for designing the output because the error is too big at the start
of the motion. The cmnputed diagrsm is in good agreement with the test
run shown in figure 8(e).

Effects of Switching linperfections

In equation (8) it is assumed that the parameters & and 7n

change upon exact zero coincidence of any one or more of the variables

y} y’l e, @ e’ as defined in equation-(13) or by the logic of

.

@.

.

.
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table 2. Physical ~erfections, however, preclude this possibility.
!l?hus,in the simulated model of equation (8), exact zero coincidence
cannot be detected because of threshold effects, and rel~s are subJect
to time lag (both mechanical ~d electrical)) dead zone) and chatter.

b the present section sn at%npt is made to evaluate the effects
that these switching imperfections had on the experimental result in
order to obtain some practical design criteria for specifying switching
requiranents for good performance in other applications of this method
of nonlinear control.

The expertiental results of figures 6, 9, and 11 canbe used to
demonstrate that re~ imperfections were not important in the simulated
model. Comparison of the sinusoidal responses in these figures has shown
that the period of the error became smaller = the magnitude of the input
smplitude was increased. (This was discussed in the section “Performance
Evaluation of Sinusoidal Inputs.”) Frcm figure n(a) in the region of
y = 20 volts (the largest magnitude considered in all the experimental
studies) the pericd of the error T= is measured as

Te = cclvte= 0.2

There are four psremeter stitchings per error cycle (see fig. 18).
Assuming these to be approximately uniformly spaced, the minimum time
between parameter stitchings is approximately Te/k. Now aasuming that

the relsys must be capable of closure in at least 1/5 of this time, the
maximum allowable (real time) switching delsy ~ is

%%3 “ Te/20 . & (23)

fi the simulated model ~ = 1 radism per second. Therefore,

As given in table 4, the relsys employed were capable of closure in
3 mil~seconds or less so that they were entirely adequate for the experi-
mental studies.

The ability to disregard the re~s in the evaluation of the effects
of switching imperfection on performance leaves only threshold effect in
sensing the sign of the vsriables y, y’, e, and e’ to be considered.
As has been observed and discussed in the section “Performance Evaluation
of Sinusoidal Tnputs” the smplitude of the error for the nonlinesr system

< was relatively independent of the magnitude of the input (i.e., when the
system is operating In the rapid e to e’ switching sequence so that
this is the minimum-error case). This consts.ncyof the lower lhi.t on.
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the error magnitude is caused by switching imperfections and thus thresh-
old in sensing the signs of vsriables. 9ince under a normal switching
sequence there sre maqy more e and e’ stitchings than y or y’
stitchings and since the”error is of u order of magnitude less than the
error derivative, the primary cause of the lower limit on error is local-
ized as threshold in sensing the sign of,the error. Figure 13 shows the
results of an investigation of this threshold effect. Ik all system-
response figures except figure 13 the peak-to-peak threshold was approxi-
mately W mi.l~volts. h figure 13(a) the peak-to-peak threshold was
~ millivolts so that figures T(a) and 13 give a good cmnpsrison of the
effects of these two threshold values.

Choice of Parameter Values

The performance of a completely
discussed. The parsmeter values for

D = 0.6

$3 =-PO

P2 = -PI

73 = -Yo

72 = ’71

specified nonlinear system has been
this system, that is,

..

0

=0.;5

were initially chosen in the following manner: D was first selected
to give good linear systa performmce; then the smallest values of the
~ and Yn parameters giving good nonlinear syst~ performance were

—

chosen experimentally from a systaatic vuiation of parameters utilizing
the simulated system. This particular set of & and yn psremeter

values can thus be denoted as (%uYn)m~n since theyestablish the lower
bound on parsmeter values for good nonlinesr system performance. The
physical.significance of (%l~7n)min is that loop gains smd acceleration

requirements of the linear member are minimized since ~ and yn are

feedback gain constants.

IYom the discussion in the section “PerformanceEvaluation of
Sinusoidal Inputs” centering about equatio~.(19) or from the phase-plaie
methods of the preceding section it is to.be expected that a general
increase in the p~ameter values over (%J7n)min willresultti@r~& .

nonlinear system performance by increasing the available acceleration of”
8

—
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the system or increasing the angulsr
tion of figures 16(a), system 1, and
true.

above,

h figure 16(a) tie psra&eter

sectors in the phase plane.
16(c), system 5, shows this
values were (&n,7n)tiIl =

and in figure 16(c), systa 5, they were

.

33

Inspec-
to be
given

P3 = -PO = 10

P2=-FJ1=l

73 = -70 = 10

?’2=-71=1

On ccmparing the performance of these two systems it is noted that the
corners of the input triangular wave axe r&cduced with less error by
the system of fi~e 16(c). Thus far then it would seem that there is
no upper bound on the psrsmeter values; that is

(EUP7.)m=+”

Invariably, however, there till be upper bounds on the values of the
parameters because of acceleration limits in the physical syst~. Fig-
ure 14 shows the effects of placing progressively smaller acceleration
limits on the system. Here it is seen that for IY”IL > 0.3~y”lu per-

formance is not appreciably affected but for values less than this good
performmce Is no longer obtained so that acceleration limits definitely
tend to determine (%n)7n)mw* k general, then, there will be a whole

range of values of ~ snd 7n; that is,

(l%u7n)w > (13m,7n)> (Pm,7nj~n

for which good nonlinear syst- performance results. The final choice
must depend upon the particular app~cation and can easily be found
experhentally.

There me certain special cases of the ~ and 7n parsmeter values

that lead to simplified feedback switching circuits and thus lesd to non-
linesr systems that are simpler to realdze. In table 3 three of these
are denoted ea (1) no derivative feedback, (2) no e’ SellZiIlg,and
(3) no e sensing in derivative feedback loop smd no e‘ sensing in
proportional feedback loop.

By reekinginoperative the appropriate relsys in figure 5 the sti-
plified switching circuits for these cases sre easily obtained. It is



desirable then to inspect the perfoqtie of these special cases (in
ccmrparisonwith that of the complete system) to ascertain whether or not
as god Performance cm be obtained with less complexity. Figure 16
shows the response of these cases in ccmiparisonwith that of the complete
system. Figures 16(a) and 16(b) differ fiwmfigures 16(c) and 16(d) in
that the general magnitude of the parameters was increased in figures 16(c)
and 16(d).

These results show that case (2) is not wort& of much consideration
since the magnitude of the oscillating eiror is large. Cases (1) snd (3),
however, should be considered for certain app~cations. For exsmple, if
it were known that the smplitude distribution of the input was relatively
void near zero, then case (1) would serve ~ well as the case of the
complete system. Case (3) shows nesrly cori&tantpercent~e error so that
it could be useful in cases where accurdcy was not so important as econcmy
in components.

To this point the psrsmeter D has,received little attention mainly
because its value (within Mmits) is no# particularly important. It has
been obse~ed experimentally that D msy be anywhere in the range
O~Dsl even for (k)yn)tin ~dP@orm~ce of thenonlinear system
is not affected. Inspection of the block diagrsm of the nonllnear system
(fig. 4 or 5) shows that the physical stgnific~ce of the variation
of D for given values of ~,7n is that the dsmping factor of the linear

member and the derivative feedback around the linesr member change syn-
chronously. A case of more practical importance such as might ~ise in
aerodymsmic applications of this type of’control system is the variation
of D for given values of D%> 7n. That is; the dsmping factor of the
linear manber alone varies while the fedlback values around this manber
remain unaffected. Even in this case ithai been found that the nonline~
systm performs well. For example, fi~e IT shows the response of the
nonlinesr systm

to triangular-wave

.

.

—

.-

D=O.1 I ---

P3 = -$0 = 12

73 = -70 = L2

Y2 = -70 = Q*5

inputs, while figure ~ shows the resjonse of the systm ‘

—
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D = 0.6

133= -PO=2

!32= -PI = 0“5

73 =-7==2

73 = -70 = 0.5

to the ssme inputs. C.cmpsringthese
is nearly the ssme for both systems.

PRELIMINARY EXZ@EION ‘IQ

results it is seen that

HrGEER ORDERSYSTEMS

performance

From a nractical standpoint lhitations in the applicabi~ty of the
nonllnesr co;trol syst- de;cribed by equation (8) do not stem f%om the
inabil.i~ to realize the feedback switching circuit but rather from
assuming the linear mmber to he of second order. M msny cases a more
realistic approach is to consider the linesr mmber to be of higher order
but still predominantly second order. Figure 22 shows the block diagram
of a third-order syst= of this nature. The linesr feedforward member
could be, for exsmple, the servo of figure 1 including the effects of
armature inductance. ‘I!hesame second-order feedback switching circuit
was still anployed. However, it could not be expected that the ~jyn
parsmeter values r-in the ssme. Figure 23 compares the response of a
third-order Mnear and nonlinesr syst-. Here it is seen that the non-
linesx system still responded with much less error than the I-i.nesxsysta.

On the basis of the comparative perfonmnce of these two systems it
seems hportant to further studies toward control of general higher order
systas using techniques similar to those developed in this investigation.

CONCLUDING REMARKS

From control equation (8) a second-order nonlinearcontrol system
that tends to maintain small instantsmeous error for relatively srbitrary
inputs has been synthesized using digital-cmnputer techniques. The only
type of nonlinear operations required in the realization,ere switching-
type operations (zero-coincidencedetection and psrameter switching).
The stitching requirements are severe from the aspect of detector sensi-
tivity smd switching time delay but not impractical since all the switching
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.

is done in feedback paths at low power Levels and may thus be performed
electronically.

“

The system demands sensing of error,and error rate of change. Since
general noise in a system of this type WE to be expectedj both error
sad error rate sre smoothed. b an ~tehsion of this work imperfections
such as a definite noise level> a given threshold or time delay in the
relays, and an overall dead time are being investigated more intensively.
It is expected that they do not serious~ impair the working of the system.

It is a difficult task to compare the performance of a nonllnear
system with that of a Iinesr system because no general criterion for com-
parison is.available. Since for nonlinear systems the law of superposition “-–
does not hold, it is not adequate to choose the response.to a certain
input (e.g., the step input) as a criterion-forperformance ccmpari.sons.
A number of different inputs therefore have been chosen for exhibiting
the qualities of the nonlinear system. ~ -

Expeiitnentalresults indicate that this type of nonlinesr control
system performs better than a linear control system having a normalized
frequency 15 times greater. Performance:is evaluated in terms of the
average value of the magnitude of the i@twtaneous emor for band-limited c“

inputs. Further, the nonlinear system perfgrmsnce is tirtually independent
of variations in the dsmping factor of the systan. .

Stsnford University,
Stanford, Calif., November 23, 1955:. . —

.
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COMPAREON OF

APPENDIX A

EQUATIK)N(8) AND NONLINEAR CONTROL EQUATION

OFREFERENCES 1AND3T05

Ccmpsrison of Notations

b original notation the nonlinear control equation wa8 given as
(refs. 1 and 3 to 5)

~+ d%. @o
—+ bw+cyo = YJt)~t2

(Al)

where

Ye(t) output

Y@ input

b=

[

b+l+ ‘2 SgIl(Y:E) + b+
b+

1
‘~ sgn (y;Et)

E= (Yo - Yi)

( )’ = d( )/dt

l!J@b@kl@2 Constsats, lib~> Ab2, Acl > AC2

++a+jb >C Constmts

h terms of the notation of equation (8) the above equation is written

a+ & + b+(l + ~) ~ + C+(I + 7n)y = X(t)

dt2
(A2)
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where

~ = -lB sm (y’e) - # sgn (y’e’);m = 0. 1, 2, 3

Y~ = -17 sgn (ye) - Zysgn (ye’); n= O,’1, 2, 3

.

e= (x-y)

&%l~@

+++a ,b ,C

The subscript

constants, LB ~ 2P} 17> 27

Corlstsmts

convention is

P3 =1P+2P 73 ‘17+27

B2 =113-2P 72 ’17 - 27

13~= +2 71 ‘“72

PO = -P3 70 = -73

Evidently, the correlation between equations (Al) and (A2) is then

Y = Yo

x= Y~

fmq Abxb Aq &k
113=—b+ ‘ 2~=b+) 17=~J 27=C+

c

e =-E :

and a+, b+, and c+ exe the seine.

Ik either notation a set of seven (constant)parameters is needed
to characterize the system. For exsmple, in equation (A2) the set

(a+, b+, c+~ @ 2~~ ~7) 27) is sufficient.
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Normalization of Nonlinesr

When considering control systems it

Control Equation

is possible
ber of parameters necessary to specify the nonlinear
a form of normalization familisr to linesr theory is
it shouldbe realized that if error is to be defined

then ~ = 1. Thus, assuming C+ = 1 equation (A2)

to reduce the num-
System. To dO this
utilized. First,
as e= (x-y)

mqybe written

x(t) (A3)

where

21=—
% a+

b+e=
Introducing normalized time -r= ~t, equation (A3) beccmes

Thus, knowing

the number of
case is five,

a#Y+m(l+k)G m+(1 + Yn)y = X(T)
dT2

(M)

the natural frequency of the undsmped I.inesrsystem ~,

parameters necessary to speci~ performance in the nonlinesr
that

or alternatively

(D, ~~, 132,73, 72)

——
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APPENDIXA3

SIMULATION OF

.

SECOND-ORDERNom- CONTROLSYSTEM

Equipment

Experimental studies were carried out with the folluwing equipment:

(1.)General equipment:
(a) Analog computer, Beckman Eas~

/

b) I&w-frequency function ge~erator, hp 202 A“(input device) “-
c) Pen recorder, Sanborn Twid-Viso (output device)
d) Vacuum-tube voltmeter, RCA WV-97A
(e) Oscilloscope, Dumont 304-A

(2) Special equipment:
(a) Binary-1ogic switching circuit employed in con@nction

with (a), described in detail in section “Binary-Logic
Rel~ Switching Circuit.~”:- d

Computer Se*up a—

The computer di~am for the differential equation

(Bl) :&+~(l+bldT ~+ (1+ 7~y =x(T)
d’r2

is given in figure 24. The corresponde~cebetween this shulated system
and the block diagrsm of figure 4 or 5 $s straightforward (see ref. 6).

Operational simplifiers
D ‘hm@ D=&eusd ‘nsti’atiw ‘he

Linesr .mmber of the physical nonlinesr:system. Resistor RI provides

adjustment of the ldmesr damping factor~ D,. The input to this simulated
linear member is x -

.,
(~w’ + 7nY) w~ers x is obtained frcm the input

device, while the values of feedback 2?~’ and 7& we obtained with

resistors R2 through ~ (see table 5) c$.nnectedto Y’ and y through

a binary-logic relay switching circuit derived in the following section.

‘P’ifiersP ‘ho@D ‘e ‘i?Cws”‘e‘ow-iab’es .
Y) Ytj ej ~d el whose signs me to~be.sensed are made available as
shown in the lower right of figure 24. ‘.

.
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Binsry-Logic Relsy Switching Circuit

.

b

To cmplete the stimulationof equation (8) it is necesssry to imple-
ment the binary logic of table 2. Figure 5 shows a relqy switching cir-
cuit (designed on an “and/or;’basis) that realizes the necessary logic.

In order to preclude the possibility of time delay in 6witching,
“fast” relqys have been mployed. The average properties of the lk
double-pole single-throw relsys comprising the switching circuit sre
given in table 4.

The necesssry synchronism in relsys connected by dashed lines
(fig. 5) is obtained by series connection of field coils. Into the four
chsmnels of field coils thus formed is red the four-digit binary logic
of table 2 where now

o = Function> O = No coil current

1 = Function <0 = Coil current

This process of reading in the binary logic msy be done by monitoring
the variable (y, yl, e, e’) with four separate zero-coincidence detectors
or smplitude selectors (denoted CD in fig. 5 snd described in detail
in the following section). The output of these coincidence detectors
then drives the respective channels of rel~ coils.

Sensitive ‘l?rmsistorizedZero-Coincidence Detector

One of the four identical smplitude selectors designed for use with
the switching circuit of figure 5 is shown in figure 25. This circuit
basically consists of a grounded emitter PNP transistor stage T1 driving a

pentode pulse smplifier T2. (It should be possible to utilize a tran- “

sister in place of the pentcde if desired.) Four relay coib connected
in series form the plate load of T2. Positive feedback R3 has been

incorporated for regenerative switching.

The operation of this circuit is as fo~ows: When the input volt-
age V becomes more negative than -50 millivolts, current starts to flow
in the base-emitter region of T1. This initiates collector-emitter cur-

rent which effectively grounds the collector and thus the grid of T2.
Plate current flows in T2 so that the relays which form this plate load
are switched to the up position (fig. 5). Positive feedback R3 has been

incorporated to make the switching regenerative. Stages T1 and T2 wild
continue to conduct until V goes positive by 50 millivolts, at which
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time current is cut off in T1 and thus T2; the relays return to the nor-

mally closed positions (down in fig. 5).

Refinements that have been included in this circuit

(1) Adjustable positive feedback R3. This feedback

are:

gives control

.

.

over the zero-sensing threshold of the detector. The greater the posi-
tive feedback the greater the threshold This adjustment is desirable
for studying the effects of threshold in sensing discussed in the section
“Effects of Switching Jinperfections.” The measured peak-to-peak thresh-
old values obtainable with this arrangen&nt were a maximum of 400 milli-
volts and a minimum of 60 millivolts. (~ the computer setup it was
necessary to amplify error e that forded ”theinput to me of these
detectors five times in order–to bring we switching threshold down to
15 millivolts, peak to peak.)

(2) Adjustable bias for emitter of !ll. This is necessary to com-

pensate for the slight positive bias (ap~oximatel.yequal to 100 milli-
volts) giyen to the base of Tl by the positive feedback R3“

#

(3) A C~PiW or C~PIiW di~e T3.to protect the tr~istor T1
from excessive base-titter inverse volt~ee. Thus it csm be seen that
the input impedance of this coincidence ?ietectoris 15 kilohms since the

.
.—

base of T1 is effectively alwsys grounde@. :

. .
.;

.

.
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BEHKVIOR OF OUTPUT IF INPUT AND INPUT DERIVATIVE

AM sIMWMNIDusLY SMALL

Assume that the input is a curve which msy be approximated by

for values r <5.
vanish with T-O .

The output depends

(1) For y(0)

(2) For y(0)

(3)For Y(O)

since x’ = 2aT, both input and input derivative
The input phase curve is

L(x’ )2
‘=4a

on the initial conditions:

=0 and y’(o) =0

[

Tk D(I + ~] # +
Y =CL-+

U2 30 1
. . .

=0 end y’(o) =El

Y
[

=E21

cases reproduction of
however, in cases (2)

smalL values of -r. h case
be expected. This case will

y’(o) = o

the input is not perfect very close to
and (3) switch points may occur for rather
(1) no stitch point close to T = O can
rsrely occur; in most cases nei*her y(0)

nor ;’(O) will be zero. Then the output is a superposition of cases”(2)
and (~): ‘In this event the error e = x - y is given by

[ ()

l+7n
e -E2 ? elT+a+clD(l+~)-E2 a

1

2.= +...T
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.

It is evident that for small values of Cl sad e2 the error grows

with a. This can easily be seen in the results of figure 11. The input 9
Wasx =A(l - sin 07); that means, neai x = 0, the input mqy be approxi-

mated by a parabola with a = l/2(Q2)A or the errors near X=o grow

with $22.

m

*

.

—

.
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APPENDM

APPROXIMATING

D

CURVES

The approximating curves which
a given input form a network in the
to present the network for e and
(e.g., see fig. 20) and the network
on another sheet. Superposition of

can be used to trace the output for
phase plane. It has proved practical
e’ of equal sign in one sheet
for e and e’ with opposite sign
both sheets allows establishing of

the four approximating curves through each point of the phase plane.

‘Iheapproximating phase curves me determinedly equation (21).
Since the values Al and A2 change from quadrant to qusdrant the curves

me composed of portions of different anal@ical curves which
at y’ =Oandy=O.

The roots Al and A2 depend on D, ~,

complex or real. If the roots are complex, the
curves of the spiral type which wind sround the

and yn; they

approximating
origin of the

are patched

nay be

curves me
phase plme.

In the case of real roots the curves have a quite different cbracter.
This can easily be understood by transformi~- the equation of the approxi-
mating curves (see refs. 1 and 3 to 5 md
roots the new coordinates v andvare

ml - El=w

aa - Fl=v

Then equation (21) yields

A2 Al
v ‘w

If Al and A2 sxe real ad of opposite

ch~ Vof ref. 7). For real
introduced:

sign, the curves in the

I-LVplane have hyperbolic character with (w,v) = (0,0) aa saddle point
(see fig. 26(a)). E Al and X2 sre of equal sign, the curves hsme

a nodal point (see figs. 26(b) and 26(c)). b figures 27 smd 28 phase
curves’with saddle point and stable and unstable node are shown in the

The approximating
types (see fig. 29).

curves are composed of portions of these different
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●

‘I’hereis no need of avoiding &,yn Combinationswhich lesd to

node-type approximating curves because only portions of these curves
are used. h the earlier publications it appeared u if (in either one

.

of the networks of approximating curves) one set of curves hsd to be
formed by curves of spiral character (cc&plex roots A). Hmever, this
has proved to be an unnecess~ restric~ioti. There might be smne trouble
with node-type curves if large delays in stitching should occur (e.g.,
delsys in y’ = O switching in fig. 29).
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T4BLE l.- CODING SCHEME FOR SWD!CHING IQGIC FORM EQUATION (14)

[0, function> O; 1, function < O]

I Binary coded decimal I Decimal

Y Y’ e

o 0 0
0 0 0
0 0 1
0 0 1
0 1 0
0 1 0
0 1 1
0 1 1
1 0 0
1 0 0
1 0 1
1 0 1
1 1 0
1 1 0
1 1 1
1 1 1

+-&-

1
I

9
0 10

l--
1 11
0 12
1 13
0 14
1 15

.

—
.



NACA TN 3826

.

TABLE 2.- MMKIX OF AIZOWED ~, 7n COMBINATIONS AS DETERMINED

BY ENCODED SWITCHING LOGIC!OBTAINED FTIOMECIJATION(lk)a

90 PI 132 P3

70 Ccmo 0100
1111 1011

71
0001 0101
1110 1010

72
0110 0010
1001 1101

73
0111 0011
1000 1100

%xsmples: p370 is chosen when 0100

occurs, i.e.,

(y> O,y’<O, e> O,e’>0)

or when 1011 occurs, I.e.,

(Y< Ojy’>O, e< O,e’ <O)

~271 is chosen when 0101 occurs, i.e.,

(Y> O,y’<O, e> O,e’ <0)

or when 1010 occurs, i.e.,

(Y< O, Y’>O, e< O,e’>0)

P173 is not possible.

49
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TABLE3.- PARAMETERSFOR FIGURE ~6

Figs. 16(a) and 16(b) I Figs. L6(c) and 16(d)

Complete system

~stem 1: E&stem j:
~3=-~o=2 73=-70=2 P3=-Po=~ 73=-70=10

P2 = -PI = 095 72 = -71 = O*5 ~2=-~1=~ 72=-71=1

(1) No derivativefeedback

system 2: Sys%em 6:
~3=-130=o 73=-70=2 J33=-130=0 73=-70=~o

~2=-~l=o 72=-71 =o.5 92=-pl=o 72=-7~=~

(2) No e‘ sensing

Sys%n 3: Systan7:
~3=-~o=2 73=-70=2 P3=-PO=1O 73=-70=10

~2=-pl=2 72=-71=2 ~2=-~~=lo 72=-7~=lo

(3) NO e sensing in derivative feedback loop and
no e’ sensing in proportional feedback loop

system4: system 8:
~3=-~o=2 73=-70=2 P3=-F()=1O 73=-70=10

132=-131=-2 72=-71=2 152= ‘~1 = -10 72 = ’71 = lo
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TABLE4.- AVERAGE PROPERTIES OF REL4YS

CIRCUIT OF FIGURE 5

FOR SWITCHING

Description:
double-pole

General Electric”CR-2791
single-throw relay mounted

on 5-prong Ampheno1 base with permanent
alwninum dust cover

Connections:

3 4

0● 0
20 ‘5

●

1

Electrical Properties Values

Coil resistance 2.5 kilohms
Coil current for
positive action 5 to 10 ma

Pull-in time 2 mlllisec
Drop-out time 3 millisec

.

.
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TABlx5.- CORRESPONDENC!EBETWEENAIMUSTABLECOMPUTER

ELEMENTS AND PAMMETERS Ol?EQUATION (8)

Element

‘1
‘2

‘3

R4

‘!5

R6

%’

R8

%

Corresponds to ““

(2D)-1

(mPo)-’

(al)-’

(2Dp2)-1

(2Dp3)-1

()Yo
-1

()71 -1

(72)-1 ‘

(73)-1 ; .

Units,
kilohms

100

100

100

100

100

mo

100

100

100

.
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Motor, gear train,~-Summing points

\ \ ?
x %

Input ‘1 P(JP + B) output
—

Gain –

%1-EF
Gain Tachometer

Figure 1.- Block
rotor, gears,

diagrsm of simple positional servo. J, inertia of motor
and reflected load; B, viscous dsmping of motor and

reflected lo6.dreferred to motor shaft; ~, constant of proportionality
between output velocity amd back electromotive force (it includes arma-
ture resistance and gear ratio frcunmotor shaft to load).

L-Pm I
I

Damp ing

t

——

Gain

Figure 2.- Illustration of stepwise nature of parameters & and 7n.
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x L

Input

&---%

\%/”,

Y

output

8

Figure 3.- Block diqqam of equation (8) assting that ~ and yn we
constant (denoted by encircling dotted line).

. —:
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x 1

Input P2+2DP+1

Y’

output

!53y I

/ i–-–-l

Figure 4.- Block-diagram Of
SwitChing

I logic

L-

equation (8) taking
&ture of ~ and

——— .— -1

into account stepwise -
7~*
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I 1 :“ I

\ 1-7-1 ~ ‘ ‘-

Input p2 + 2bp -+ 1

I

,.j;_+&j
IH ! I *I

1, I

1! ‘i
I I I i

variables y Y’e er

Y

output

Figure ~.-”Block diagram showing complete physical interpretation of
equation (8). CD, zero-coincidence detectors.



NACA TN 3826 57

.

(a) Nonlinesx spte~j Q = a)/q = 0.1 to 0.4 in 0.1 steps.

.

.

// ~ ~ .=~t

(b) Linesr system; ~ = u/~ = 0.1 to 0.4 i.n

Figure 6.- Linear and nonlinesr system responses for
peak sinusoidal inputs with frequency Q varied.
divisions on time scsle = 1 normalized time unit;

0.1 steps.

20-volt peak-,to-
D= 0.6; 2.5 Sllldl
tick marks at

bottom of figures indicate where frequency was varied.
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(c) Nonlinear system;Sl= cJ/q = 0.5“to0.8 in o.1 steps.

r

(d) Linesr system; ~ = U/@V = 0.5 to 0.8 in 0.1 StepS.

Figure 6.- Continued.

. .
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(e) Nonlinear system; fl= m/uw = 1.0 to 2.0 in 0.2 steps.

(f) Idnesr system; ~ = m/mv = 1.0 to 2.0 in 0.2 steps.

Figure 6.- Concluded.
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,

.

(a) Nonlinear SyStemj Q = 2@T = 0.1 to 0.4 in 0.1 steps.

*

(b) Linesr system; Q = 2YC/T= 0.1 to 0.4 in 0.1 steps.

.gure7.- Linesr and nonlinear system responses to 20-volt pesk-to-peak
triangular-wave inputs with period T varied. D = 0.6; 2.5 SIllall

divisions on time scale = 1 normalized time ~itj tick marks at bottom
of figures indicate when periods were varied.

.

.

.

.
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(c) Nonlinear system; Sl= 2fi/T= 0.5 to 0.8 in 0.1 steps.

(d) Linear system; Q = 27c/T= 0.5 to 0.8 in 0.1 steps.

Figure 7.- Continued.
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(e) Nonlinear system; Q.= 2fi/T= 1.0 to 2.0 inO.2 steps.

(f) Nonlinesx syst~j Q = 2fi/T= 1.0 to 2.0 in 0.2 steps.

Figure 7.- ConOluded.

.

“-
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.

.

.

b

.

(a) Nonlinea system; a = 4 and 2. Tick mark at bottom of figure indicates
where a was vsried.

-.

(b) Linear system; a = 4 :ndr~. ~ -s ~aied.Tick mark at bottom of figure indicates

Figure 8.- Linear and nonlinesr system responses to 20-volt pesk-to-peak
partially integrated square-wave input. D = O.6; 2.5 smsll divisions
on time stale = 1 normalized ttie unit.



64 NhCA TN %26

.

.

.

(c) Nonlinear SyStem; ~=ls.d O.5. ‘Tick mark at bottcm of figure
indicates when a tiasvaried.

(d) Linear system; a = 1 smd 0.5. Tick &k at bottom of figure indicates
when a was varied.

Figure 8.- Cont@m’d.

●

✎
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.

(e) Nonlinear and linesr systems; a
indicates demarcation between

Figure 8.-

= o. Tick mark at bottom of figure
nonlinear and linesr systems.

Concluded.
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.4

.

(a) Nonlinear system;Sl= al% = 0.1 to 0.4 in O.l steps.

(b) Linear

Km,
T = U.)vt

system; fl
/

= u ~ = 0.1 to 0.4 in 0.1 steps.

Fi~e 9.- Linearand nonl.inesrsystem responses to 4-volt peak-to-~ak
sinusoidal inputs with frequency Cl varied. D = 0.6; 2.5 small
divisions on time scale = 1 normalized time unit; tick marks at
bottom of figures indicate where frequency was varied.
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(c) Nonlinear system; S2= o/~ = 0.5 to 0.8 in O.I ~tepfi.

(d)~ne~ SyStm; Q = u)/~ = 0.5 to 0.8 in O.I.Steps.

Figure 9.- conti~~do
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.

“

(e) Nonlinear system; n = o ~ =:1.0 to 2.0 in 0.2 steps”
/

(f) Line= system; S1=01~ = 1.0 to 2.0 in 0.2 steps.

Figure 9.- Conclu;ed.

I —
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(a) Nonlinesr system; Sl.ol~ =0.lto 0.4 inO.1 steps.

(b) Line=system; fl=ul~ =O.lto O.k in O.l steps.

Figure 10.- Linear and nonline= system responses to 20-volt peak-to-
peak sinusoidal inputswith frequency fl varied that are cli~d
synmetricsJ2y at *6 volts. D = 0.6; 2.5 small divisions on time
scale = 1 normalized time unit; tick marks at bottom of figures indi-
cate where frequency waa varied.
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--

(c) Nonlinear system; 0. u ~ =0.5””to 0.8 in O.I steps.
/

(d) Linesr system; O = w ~ = 0:5 to 0.8 in 0.1 steps.
/

Figure 10.- Continued.

.

.

.
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(f) Linesr system; Q =u~ = 1.0 to 2.0 in 0.2 steps”.
/

Figure 10.- Concluded.

71
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.

(a) Q=U/~ = 0.1 to 0.4 in 0.1 steps.

(b) ~=u/uV=().5t00.8 in O.l steps.

@re 11.- Nonlinear system responses 0$ 20-volt peak-to-peak sinusoidal
input with frequency fl varied that has been displaced by -10 volts
(direct-currentcomponent) forobtainin& oscul.ation. D=0.6j 2.5 small
divisions on time scale = 1 normalized time Unitj tick marks at bottom
of figures indicate where frequency wds v“aried.

.

.-
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(a) Nonlinearsystem.

.

(b) Linear SySteM.

Figure 12.- Linear and nonlinear system responses for triangular-wave
input whose period and amplitude are randomly modulated. D = 0.6;
1 smaU division on time scale = 1 normalized time unit.



74 NAM TN 3826

.

.

(a) Nonlinear system response to tria@lar-wave input with period varied
as in figure 7(a). D = 0.6; tick marks-at bottom of figure indicate
when period was varied. Threshold in sensing sgn e was 44 millivolts.

Magnified 300 times

Peak-to-peak error

Threshold

x and y

1

(b) Constant input x(T) was--gvolts.
.

Figure 13.-Effects of switching delays due to threshold in sensing sgn e.
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(a) Ncmlinear system; no y“ limit.

(b) Nonlinear system; t12-volt y“ limit.

Figure 14.- Nonlinear system responses to 20-volt peak-to-peak sinusoidal
input with var@ng acceleration limits. D = 0.6; ~ = U/uV = 0.5;

2.5 small.divisions on time scale = 1 normalized time unit.
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(c) Nonlinear system; *9-vGlt y“ lhit.

NAM TN 3826

.

.

.

.

(d) Nonlinear system; *7* -volt y“ limit.

Figure 14.- Continued.
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(e) Nonlinear system; A6.volt y“ limit.

(f) Nonlinear system; +-volt y“ limit.

Figure 14.- Concluded.
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●

(a) Nonlinear system.

(b) Linear system.

Figure 15.- Linear”and nonlinesx system responses to 2Q-volt pea&to-

~eak sinusoidal input with *~-vo}t-~locity limit.” D = 0.6;

n 2YC/T= 0.5; 2.5 small divisions on time scale = 1 nomi~d .
t&e unit.

w

...—
.
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.

.

(a) Complete
*stem 1:

system 2:

system 1 smd system with no derivative feedback 2.
P3 = -PO = 2; i32= -P1 = ‘*5; 73 = ’70 = 2; 72 = ‘Yl = 0.59

PZ=-Pn= 0;$9=-~, =O;7Z= -Yn=2;70=-Y, =O=5. -

(b) Systemwith no e‘ sensing 3 and system with no e sensing in deriva-
tive feedback loop and no e ! sensing in proportional feedback loop 4..
System 3: P3 = -PO =2; p2=-pl= 2;73=-70= 2; 72=-71=2.

System 4:
‘3=-PO =2; P2=-P1=-2; 73=-70 ‘2; 72=-71=2”

Figure 16.- Responses of nonlinear system with four clifferent parameter
sets to a 20-volt peek-to-peak triangular-wave input with fixed period
T = 10Jc. D = 0.6; 2.5 smsll divisions on ttie scale = 1 normalized
the unit; tick marks at bottom of figures indicate demarcation between
systems.

— -—
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3

(c) Complete system 5 and system with no derivative feedback 6.
9ys&lm 5: fi~= -PO ‘; 73 = ’70 ‘lo; 72 = ’71 =1.slo; p2=-P~=

system 6: ~3=-~()=O;~p=-!3~=D;73 ‘-70=10; 72=-7~=10

“

. :.

.

(d) System with no e‘ sensing 7 and system Wtth no e sensing in deriva-
tive feedback loop and no e’ sensing W proportional feedback loop 8.

—

system ~: P3 = -Po = 10; p2 = -pl=loj 73= -y. =10; 72= -71=10.

system 8: $3 = “PO =10; P2= -PI= -1P; 73 = -70 =10; 7P = -71=10. -

Figure 16.- Concluded. _.
.



G

.

.

.

.

.

NACA TN 3826 81

(a) S2= ~/T = 0.1 to 0.4 in 0.1 steps.

(b) $2= 2YC/T=0.5 to 0.8 inO.1 steps.

Figure 17..Nonlinear system responses to 20-volt peak-to-peak tria~-
wave input with period T varied. D =0.1; p3 =-P() = M; P2 =-B1 =3;

73 = -y. = 2; 72 = -71 = 0.>; 2.5 smalldivisions on time scale = 1 nor-
malized time unit; tick marks at bottom of figures indicate where period
was varied.
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(a)

NACA TN X26

,

.

J x /$9100’0
1010
1011

— 1001

/ \ VT =(.1-t

/
0111

/O;;;O

~ Y%1100

0101 1101

0111
/

1111

1110
1100

“-m” (c)

Figure 18.- Sketch
nonlinear

showingportions of superposed input and output of
system magnified approximately 100 times.

.=

.

—
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‘

Figure19.- Phase-plage smgul.arsectors defined by equation (22) for the
given parsmeter val~s. ~B = 1.5; # = 0.5; ~y = 0.45; 27 = 0.05;
2D = 0.25; ~ = 2.
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Figure 21.- Portion of output pbaee diagrem for Sqmre-wave tiput.

~3 = ‘PO = z; $2= -~1 =0.5; 73 = -7. = 2; Y2= -71=0.5; D= 0.6;

%=1.
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.

..-

X 1

Input (TP + 1)(P? + 2DP+1.) —
—

.Y

output

Figure.22.- Block dis.grsm

I
Sensed

I
I I I I

variable s-Y Y’ e e’

of third-o~r nonlinear control system.

.

.
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(a) Noril+esr system.
‘3

= -p. = 2; 132= -Pl = 0.1; 73 = -70 = 2;

2’2= -71 = -0”59

(b)Linear system.

Figure 23.- Linear and nonlinear third-order system responses to random
input. T = 0.1; D = 0.6; 2.5 smaIJ-divisions on time scal_e= I nor-
malizedtime unit.
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Input
x

-

R

2.5

R

R

I

d

.
J.

3
output

6
Y

-Y

t;

I ‘lo 1.5 1.5
1

1
1,

,

R8

b
0,0

2.5

R

Sensed vsriable
for switch-

Resistance in 100 kilohms eontrol
Capacitance in microfarads

Figure 24.- Computer diagrsm for’simul.ationof equation (8).



NACA m 3826 89

.

.

-7 ● ~v B+ (210 v regulated)
? Qa

100K ~ Relay coils,
10-kv d-c
resistance

4.7’meg n

potentiometer

15K

v
‘3

I
I

—

Figure 5.- Transistorized zero-coincidence detector.

x

.
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L
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(b)

., #.”
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D

. (c) $<1.

.

.

Figure 26.- Curves in,-WV plane.
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NACAm ,3826

Figure 27.- Phase.curveswith saddlepoint.

(a) Stable node. (b) Unstable node.

Figure 28.- Phase curveswith noU point.

,.’
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.- .7

..-.

Fim 29.- Composition of an approximating curve.

#

—

NACA - Langley Field, Va.


